課題名	22 地域特産物の加工流通促進技術の確立							
	夏期出荷アスパラガスの鮮度保持法							
試験研 究年次	63~ 2年 (完了)	:		1	1			

I 目的

夏期に出荷するアスパラガスについて、流通の各段階におけるフィルム包装と 低温を組み合わせた鮮度保持方法を明らかにする。

Ⅱ 試験方法

- 1 供試品種及び収穫時期 'メリーワシントン500W'7月下旬収穫
- 2 試験区の構成
- (1) 低温とフィルム包装による鮮度保持効果の検討 ①0.01mmPE密封包装 ②0.02mmPE密封包装 ③0.025mmOPP密封包装 ④無包装の各 処理区(1区1束約100g 3反復)について、各々0℃、5℃、室温において貯蔵した。
- (2) 予冷及び低温流通の効果の検討 農家の個別予冷庫、集荷場の予冷庫、市場までの低温輸送の有無を想定して 下記試験区を設定した。

収穫当日 188 2日目 3日目 収穫 調製 集荷 予治 出荷 市場 小売店 7:00 10:00 17:00 10:00 13:00 16:00 (農家予冷庫) (集荷場予冷庫) (低温輸送) | 5℃ | 室温 | 5℃ | മ 室温 2 室温 | 5℃ | 室温 | 5℃ | 室温 3 」 5℃ | 室温 **宮温** - 1 I 5℃ I 4 - 1 室温 | 5℃ | 室温 (5) 室温 1 5°C | **6** 室温 1 5°C 1 室温 7 室温 1 5°C 1 (8) 1 室温 3 調査項目 包装内ガス濃度、ビタミンC含量、障害の発生、総合鮮度

Ⅲ 主要成果の概要

アスパラガスの鮮度保持には厚さ0.02mmのポリエチレンフィルムで包装し、 農家 段階の予冷、 集荷場予冷及び低温輸送と、 一貫した 5℃における低温流通が最も効果的である。

- 1 低温貯蔵の場合は、包装フィルムの厚さによる総合鮮度の差は認められない。
- 2 室温貯蔵の場合、0.02mmのポリエチレンフィルム包装が比較的効果がある。0.01 mmポリエチレンでは茎の伸長が激しく、ポリプロピレンでは発酵臭が発生し、いずれも急速に鮮度が低下する。
- 3 予冷開始が早いものほど、5℃遭遇時間が長いほど、全ビタミンCに占める還元型ビタミンCの割合 (RVC/全VC) が高い傾向がみうけられる。
- 4 出荷後の低温輸送により、特に穂先と株基の障害発生が抑制される。農家段階予冷のみ、または集荷場予冷のみでは鮮度保持効果は期待できない。

IV 主要成果の具体的データ

第1表 総合鮮度の変化

(63~1年)

第2表 収穫後5日目の 包装内ガス濃度 (1年)

試験区	収穫後日数						こ数7177個及		
IPV9X ES	0	1	2	4	5	7	試験区	CO ₂	02
<u>0℃</u>							<u>0℃</u>	%	Z
0.01PE	4.0	4.0	3.0	3.0	3.0	3.0	0.01PE	1.0	18.3
0.02PE	4.0	4.0	4.0	3.0	3.0	3.0	0.02PE	1.8	15.1
0.0250PP	4.0	4.0	4.0	3.0	3.0	3.0	0.0250PP	6.0	3.8
無包装	4.0	3.0	2.0	1.0	0.0	0.0			
5°C							5°C		
0.01PE	4.0	4.0	3.0	3.0	3.0	3.0	0.01PE	1.0	18.6
0.02PE	4.0	4.0	4.0	3.0	3.0	3.0	0.02PE	2.0	14.2
0.0250PP	4.0	4.0	3.0	3.0	3.0	3.0	0.0250PP	4.8	5.9
無包装	4.0	3.0	2.0	1.0	1.0	0.0			
室温							室温		
0.01PE	4.0	3.0	2.5	2.0	0.5	0.0	0.01PE	3.9	13.3
0.02PE	4.0	3.3	3.0	2.5	2.0	1.0	0.02PE	4.8	5.9
0.0250PP	4.0	3.5	2.0	1.0	0.3	0.0	0.0250PP	11.2	3.6
無包装	4.0	2.5	1.0	0.0	0.0	0.0			

注)① 総合鮮度の評価は、 収穫時の鮮度を4、 市場出荷可能を3、小売販売可能を2、 食べられるを1、食べられないを0と 数値化して示した。

第3表 予冷及び低温流通によるアスパラガスの鮮度保持(3日目) (2年)

	5℃	全VC	RVC	RVC	障害発生率			-
試験区				全VC	穂先	株基	総合鮮度	
	hr	mg%	mg%	%	*	*		_
1	65	13.9	10.5	75.5	0	0	3.0	
2	23	10.1	6.6	65.5	12.5	18.8	2.3	
3	61	12.4	8.6	69.2	0	0	2.5	
4	19	13.7	7.8	58.4	5.1	59.0	1.3	
(5)	46	16.9	11.2	65.5	0	0	2.0	ċ
6	4	17.0	10.4	60.9	25.0	10.0	1.3	
7	42	17.8	10.9	61.2	0	0	2.0	
8	0	11.3	6.7	59.1	3.3	3.3	1.0	

- 注) ① VCはビタミンC、RVCは還元型ビタミンC。
 - ② 総合鮮度の評価は第1表に同じ。

V 成果の評価と取扱上の留意点

夏期出荷のアスパラガスの鮮度保持指導資料として活用する。

VI 今後の研究上の問題点

農家段階の予冷開始時刻を、さらに早めた場合の鮮度保持効果の検討。

VII 資料名

2年度 福岡県農業総合試験場生産環境研究所 流通加工試験成績書