
[成果情報名]高昼温低夜温管理による9月上旬植え促成ナスの収量性と省エネ効果 [要約]9月上旬に定植する促成ナス栽培において、主枝摘芯開始後の12月から高昼温 低夜温管理を行うと慣行温度管理と同等の商品果収量となり、暖房用燃料消費量は約40 %削減される。

[キーワード] 促成ナス、温度管理、暖房用燃料消費量

[担当部署] 野菜栽培部・野菜栽培チーム、(南筑後地域農業改良普及センター)

「連絡先〕092-922-4364

[対象作目] 野菜

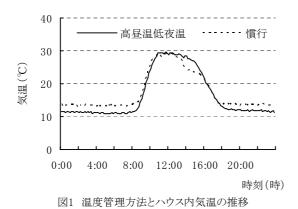
[専門項目] 栽培

[成果分類]技術改良

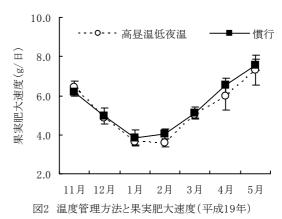
[背景・ねらい]

促成ナス栽培において高収量を確保するためには、厳寒期の適切な温度管理が重要である。県内産地の高収量生産者の温度管理実態調査から、促成ナスの厳寒期における温度管理モデルとして、午前を 28 \mathbb{C} 、午後は 16 時頃までに 25 \mathbb{C} \sim 1 \mathbb{C} / 時下温して、夜間を 12 \mathbb{C} とする慣行管理の他に、午前の温度は慣行と同じで、午後の温度を 16 時頃まで 28 \mathbb{C} に維持し、夜間を 10 \mathbb{C} とする高昼温低夜温管理とがある(図 1)。

近年、原油価格の高騰の中、暖房用燃料消費量の削減を目的として高昼温低夜温管理が、 促成ナス栽培の収量性や省エネ効果に及ぼす影響を明らかにする。


「成果の内容・特徴〕

- 1. 9月上旬に定植し、第3主枝の摘心期の 12 月上旬から高昼温低夜温管理を行うと、 慣行温度管理と比較して、各主枝の茎長、摘芯日及び着花数が同等となる(表1)。
- 2.9月上旬に定植し、12月上旬から高昼温低夜温管理を行うと、慣行温度管理と比較して、11~5月の果実肥大速度が同等となり、各時期の商品果収量及び総収量が同等となる(図2、表2)。
- 3. この温度管理では、不良果発生割合は慣行温度管理と同等である(データ略)。
- 4. この温度管理をしたハウスでは、慣行温度管理と比べ、相対湿度が20%高く、地温は最高値が1%高く、最低値が1%低い (データ略)。
- 5. 高昼温低夜温管理は、慣行温度管理と比較して、暖房用燃料消費量が約 40 %削減される (表 2)。


[成果の活用面・留意点]

- 1. 促成ナスの省エネ栽培技術資料として活用できる。
- 2. 主枝摘心前の 11 月より高昼温低夜温管理を開始すると、初期生育が抑制され、減収するため、主枝摘心開始後の 12 月より行う。
- 3. 高昼温低夜温管理を行うと慣行温度管理と比較して、相対湿度が高くなるため、多湿性病害の灰色かび病等の発生に注意し、空気の循環を行うとともに初期防除を徹底する。

[具体的データ]

注) 1. ハウス内気温は平成18年12月20日~1月22日の晴天日の平均。

注)1. 図中のエラーバーは標準偏差を示す

表 1 温度管理方法と各主枝の生育 1), 着花数 2)および摘芯日 3) (平成 19年)

温度管理方法	第1主枝			第2主枝			第3主枝		第 4 主枝			
	茎長	着花数	摘芯	茎長	着花数	摘芯	茎長	着花数	摘芯	茎長	着花数	摘芯
	(cm)	(個)		(cm)	(個)		(cm)	(個)		(cm)	(個)	
高昼温低夜温	138	37	11/11	141	37	11/27	136	34	12/10	136	38	1/30
慣行	139	38	11/13	137	38	11/25	130	34	12/9	130	36	1/27
有意性 4)	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.

- 注) 1. 定植日は平成19年9月7日。茎長は平成20年1月30日時点の長さ。
 - 2. 着花数は主枝花を除く、各主枝発生の側枝の着花数。
 - 3. 摘芯は第1主枝は第9果、第2主枝は第9果、第3主枝は第8果、第4主枝は第8果着果時に実施。
 - 4. t-検定により、n.s.は有意差なし。

表 2 温度管理方法と時期別収量及び暖房用燃料消費量(平成 19年)

		商品果収量		総	収量 2)	暖房用燃料消費量	
温度管理方法	10~11月	12~3月	4~6月	10	~6月	11~4月	
	重量(kg/m²)	重量(kg/m²)	重量(kg/m²)	果数(果/m²)	重量 (kg/m²)	白灯油(L/120 ㎡)	
高昼温低夜温	4.1 (100)	6.0 (100)	8.8 (102)	151	20.1 (101)	630 (56)	
置行	4.1 (100)	5.9 (100)	8.6 (100)	149	20.0 (100)	1120 (100)	
有意性 3)	n.s.	n.s.	n.s.	n.s.	n.s.		

- 注) 1. 商品果収量は上物収量+中物収量。
- 2. 総収量は商品果収量+下物収量。
- 3. 暖房用燃料消費量は、120㎡パイプハウスにおける温風暖房機の白灯油使用量。

[その他]

研究課題名:促成ナスの厳寒期における温度管理技術の確立

予算区分:経常

研究期間:平成19年度(平成17~19年)

研究担当者:奥幸一郎、森山友幸、柴戸靖志、小熊光輝、井手治、龍 勝利