[成果情報名]ブドウ種なし「巨峰」の電照処理による果粒の肥大促進と花穂の確保 「要約]早期加温栽培におけるブドウ種なし「巨峰」では、電照処理を行い、新梢先端の 管理を摘心とした場合、樹勢が強化され、果粒重が重くなる。さらに、翌年の花穂着生数 も電照処理により増加する。

「キーワード」ブドウ、種なし「巨峰」、電照処理、果粒重、花穂着生数

「担当部署] 果樹部・果樹育種チーム

「連絡先] 092-922-4946

「対象作目]果樹

[専門項目]栽培 [成果分類]技術改良

「背景・ねらい)

「巨峰」の早期加温栽培では、日長が短い時期に生育するため樹勢が低下しやすく、特 に種なし「巨峰」では果粒肥大が不良となりやすい。さらに、翌年の花穂着生数も少なく なるなど、高品質果実の連年安定生産が大きな課題になっている。そこで、樹勢強化と花 穂着生に有効とされる電照処理を早期加温栽培の種なし「巨峰」に適用し、果粒の肥大促 進や花穂着生数の増加を図る。

「成果の内容・特徴]

- 1.深夜 2時間の電照処理を行い、新梢先端の管理を摘心とした場合、新梢長や新梢当た りの副梢数が増加する。しかし、摘心せずに新梢生育抑制剤を使用した場合、電照処理 が新梢生育に及ぼす影響はほとんどない(表1)。
- 2. 電照処理を行うと新梢の登熟開始が遅れ、摘心をせずに新梢生長抑制剤を使用した場 合に収穫期の登熟長が短くなりやすい(表1、一部データ略)。
- 3.電照処理を行い、新梢先端の管理を摘心とした場合、果粒重が重くなり、果房重も増 加する(表2)。
- 4. 電照処理を行うと、翌年の花穂着生数が増加する(表3)。

[成果の活用面・留意点]

- 1 . ブドウ種なし「巨峰」の早期加温栽培における果粒の肥大促進および翌年の花穂確保 技術として活用できる。
- 2.新梢伸長抑制剤(フラスター液剤)を使用すると新梢伸長および副梢の発生が抑制さ れて電照処理の効果が劣る。
- 3.電照処理により登熟長が短くなりやすいので、短梢せん定での導入を基本とする。

[具体的データ]

表1 種なし「巨峰」における電照処理と新棋、副梢の生育、登熟長(平成18~19年)

					-		
試験年次(試験場所)	試験区	新梢長 (cm)	副梢数 (本/新梢)	副梢葉数 (枚/新梢)	登熟長 (cm)	新梢先端 管理	
平成18年 (筑後市) _	電照	125	4.3	6.8	37	新梢生育 - 抑制剤	
	無処理	132	4.9	6.1	52		
	t検定	ns	ns	ns	*		
平成19年 (黒木町)=	電照	151	2.5	4.8	60		
	無処理	109	1.2	1.4	73	摘心	
	t検定	*	*	ns	ns	_	

- 注)1.電照処理は白熱球(75W)を用いて、開花2週間前(展葉5、6枚期)から 4週間、深夜2時間の暗期中断処理(棚面最低照度 20lux)
 - 2.新梢長、副梢数、副梢葉数はいずれの年も4月10日 (電照終了2週間後)調査
 - 3.登熟長は平成18年は6月12日、平成19年は5月31日調査(いずれも収穫期)
 - 4.t検定により*は5%水準で有意差あり

表2 種なし「巨峰」における電照処理と果実品質(平成18~19年)

試験年次 (試験場所)	試験区	果房重 (g)	果粒数 (粒)	果粒重 (g)	果皮色 (カラーチャート)	糖度 (Brix)	酸含量
平成18年 (筑後市) -	電照	528	39.8	13.2	8.2	16.5	0.71
	無処理	449	35.1	12.8	9.1	17.6	0.73
	t検定	ns	ns	ns	ns	ns	ns
平成19年 <i>(</i> 黒木町)。	電照	432	33.9	12.8	8.2	17.5	1.06
	無処理	354	31.8	11.2	7.9	18.4	1.05
	t検定	**	ns	*	ns	ns	ns

- 注)1.電照処理は白熱球(75W)を用いて、開花2週間前(展葉5、6枚期)から 4週間、深夜2時間の暗期中断処理(棚面最低照度 20lux)
 - 2.平成18年は6月12日、平成19年は5月31日収穫調査
 - 3.t検定により**、*はそれぞれ1%、5%水準で有意差あり

表 3 種なし 巨峰」における電照処理と翌年の花穂着生数 (平成19年 黒木町)

	新梢当たり	つの花穂数	- 結果母枝当たりの花穂数	
試 験 区	第1新梢 (花穂/新梢)	第 2新梢 (花穂/新梢)	で穂/結果母枝)	
電照	1.0	1.4	2.4	
無 処 理	0.7	0.8	1.5	
t検定	ns	*	*	

- 注)1.電照処理は白熱球 (75W)を用いて、開花週間前 (展葉5、6枚期)から 4週間、深夜2時間の暗期中断処理 (棚面最低照度 20lux)
 - 2第1新梢、第2新梢:それぞれ第1芽目、第2芽目から発生した新梢
 - 3.平成20年 2月 5日調査
 - 4.t検定によりは5%水準で有意差あり

[その他]

研究課題名:ブドウ「巨峰」の無核栽培における果実品質向上技術の確立

予算区分:経常

研究期間:平成19年度(平成17~19年)

研究担当者:藤島宏之、白石美樹夫、千々和浩幸、牛島孝策、松田和也